Stainless Steel Strip Grades

Stainless Steel grades
A more comprehensive list of comparisons can be found here.
Type 304

Chemistry

Grade C Mn Si P S Cr Mo Ni N
304 min.

max.

0.08

2.0

0.75

0.045

0.030

18.0

20.0

8.0

10.5

0.10

304L min.

max.

0.030

2.0

0.75

0.045

0.030

18.0

20.0

8.0

12.0

0.10

304H min.

max.

0.04

0.10

2.0

0.75

-0.045

0.030

18.0

20.0

8.0

10.5

Mechanical Properties

Table 2. Mechanical properties of 304 grade stainless steel

Grade Tensile Strength (MPa) min Yield Strength 0.2% Proof (MPa) min Elongation (% in 50mm) min Hardness
Rockwell B (HR B) max Brinell (HB) max
304 515 205 40 92 201
304L 485 170 40 92 201
304H 515 205 40 92 201
304H also has a requirement for a grain size of ASTM No 7 or coarser.

Grade Specification Comparison

Possible Alternative Grades

Grade UNS No Old British Euronorm Swedish SS Japanese JIS
BS En No Name
304 S30400 304S31 58E 1.4301 X5CrNi18-10 2332 SUS 304
304L S30403 304S11 1.4306 X2CrNi19-11 2352 SUS 304L
304H S30409 304S51 1.4948 X6CrNi18-11

Type 316

Chemistry

Grade   C Mn Si P S Cr Mo Ni N
316 Min 0 16.0 2.00 10.0
Max 0.08 2.0 0.75 0.045 0.03 18.0 3.00 14.0 0.10
316L Min 16.0 2.00 10.0
Max 0.03 2.0 0.75 0.045 0.03 18.0 3.00 14.0 0.10
316H Min 0.04 0.04 0 16.0 2.00 10.0
max 0.10 0.10 0.75 0.045 0.03 18.0 3.00 14.0

Mechanical Properties

Table 2. Mechanical properties of 316 grade stainless steels.

Grade Tensile Str
(MPa) min
Yield Str
0.2% Proof
(MPa) min
Elong
(% in 50mm) min
Hardness
Rockwell B (HR B) max Brinell (HB) max
316 515 205 40 95 217
316L 485 170 40 95 217
316H 515 205 40 95 217

Note: 316H also has a requirement for a grain size of ASTM no. 7 or coarser.

Possible Alternative Grades

Grade UNS
No
Old British Euronorm Swedish
SS
Japanese
JIS
BS En No Name
316 S31600 316S31 58H, 58J 1.4401 X5CrNiMo17-12-2 2347 SUS 316
316L S31603 316S11 1.4404 X2CrNiMo17-12-2 2348 SUS 316L
316H S31609 316S51

Note: These comparisons are approximate only.

Type 310

Chemistry

Grade C Mn Si P S Cr Mo Ni N
310 min.

max.

0.25

2.00

1.50

0.045

0.030

24.0

26.0

19.0

22.0

310S min.

max.

0.08

2.00

1.50

0.045

0.030

24.0

26.0

19.0

22.0

Mechanical Properties

Grade Tensile Strength (MPa) min Yield Strength 0.2% Proof (MPa) min Elongation (% in 50mm) min Hardness
Rockwell B (HR B) max Brinell (HB)
max
310 515 205 40 95 217
310S 515 205 40 95 217

Type 301

The properties for Grade 301 are specified for flat rolled product (plate, sheet and coil) in ASTM A666. Similar but not identical mechanical properties are specified

in EN 10088.2 and JIS G4305 and in proprietary specifications.

Typical compositional ranges for grade 301 stainless steels are given in table 1.

Table 1. Composition ranges for 301 grade stainless steel

Grade C Mn Si P S Cr Mo Ni N
301

ASTM A666

min.

max.

0.15

2.0

1.0

0.045

0.030

16.0

18.0

6.0

8.0

0.10

301L

JIS G4305

min.

max.

0.03

2.0

1.0

0.045

0.030

16.0

18.0

6.0

8.0

0.20

1.4318/301LN

EN 10088-2

min.

max.

0.03

2.0

1.0

0.045

0.015

16.5

18.5

6.0

8.0

0.10

0.20

 

 

 

Stainless steel is not a single material but the name for a family of corrosion resistant steels. Like many scientific discoveries the origins of stainless steel lies in a serendipitous accident. In 1913 Sheffield, England, Harry Brearley was investigating the development of new steel alloys for use in gun barrels. He noticed that some of his samples didn’t rust and were difficult to etch. These alloys contained around 13% chromium.

The first application of these steels was in cutlery for which Sheffield subsequently became world famous. Simultaneous work in France led to the development of the first austenitic stainless steels.

Worldwide demand for stainless steel is increasing at a rate of about 5% per annum. Annual consumption is now well over 20 million tonnes and is rising in areas such as the construction industry and household appliances. New uses are being continuously found for the attractive appearance, corrosion resistance, low maintenance and strength of stainless steel. Stainless steel is more expensive than standard grades of steel but it has greater resistance to corrosion, needs low maintenance and has no need for painting or other protective coatings. These factors mean stainless steel can be more economically viable once service life and life-cycle costs are considered.

All stainless steel are iron-based alloys that contain a minimum of around 10.5% Chromium. The Chromium in the alloy forms a self-healing protective clear oxide layer. This oxide layer gives stainless steel their corrosion resistance. The self healing nature of the oxide layer means the corrosion resistance remains intact regardless of fabrication methods. Even if the material surface is cut or damaged, it will self heal and corrosion resistance will be maintained.

Conversely, normal carbon steels may be protected from corrosion by painting or other coatings like galvanising. Any modification of the surface exposes the underlying steel and corrosion can occur.

The corrosion of different grades of stainless steel will differ with various environments. Suitable grades will depend upon the service environment. Even trace amounts of some elements can markedly alter the corrosion resistance. Chlorides in particular can have an adverse effect on the corrosion resistance of stainless steel.

Grades high in Chromium, Molybdenum and Nickel are the most resistant to corrosion.

Stainless steel designations
SAE UNS designation % Cr % Ni % C % Mn % Si % P % S % N Other
Austenitic
301 S30100 16–18 6–8 0.15 2 0.75 0.045 0.03
302 S30200 17–19 8–10 0.15 2 0.75 0.045 0.03 0.1
302B S30215 17–19 8–10 0.15 2 2.0–3.0 0.045 0.03
304 S30400 18–20 8–10.50 0.08 2 0.75 0.045 0.03 0.1
304L S30403 18–20 8–12 0.03 2 0.75 0.045 0.03 0.1
304N S30451 18–20 8–10.50 0.08 2 0.75 0.045 0.03 0.10–0.16
310 S31000 24–26 19–22 0.25 2 1.5 0.045 0.03
310S S31008 24–26 19–22 0.08 2 1.5 0.045 0.03
314 S31400 23–26 19–22 0.25 2 1.5–3.0 0.045 0.03
316 S31600 16–18 10–14 0.08 2 0.75 0.045 0.03 0.1 2.0–3.0 Mo
316L S31603 16–18 10–14 0.03 2 0.75 0.045 0.03 0.1 2.0–3.0 Mo
316F S31620 16–18 10–14 0.08 2 1 0.2 0.10 min 1.75–2.50 Mo
316N S31651 16–18 10–14 0.08 2 0.75 0.045 0.03 0.10–0.16 2.0–3.0 Mo
321 S32100 17–19 9–12 0.08 2 0.75 0.045 0.03 0.10 max Ti 5(C+N) min, 0.70 max
Ferritic
405 S40500 11.5–14.5 0.08 1 1 0.04 0.03 0.1–0.3 Al, 0.60 max
409 S40900 10.5–11.75 0.05 0.08 1 1 0.045 0.03 Ti 6 x C, but 0.75 max
429 S42900 14–16 0.75 0.12 1 1 0.04 0.03
430 S43000 16–18 0.75 0.12 1 1 0.04 0.03
430F S43020 16–18 0.12 1.25 1 0.06 0.15 min 0.60 Mo (optional)
430FSe S43023 16–18 0.12 1.25 1 0.06 0.06 0.15 Se min
Martensitic
403 S40300 11.5–13.0 0.6 0.15 1 0.5 0.04 0.03
410 S41000 11.5–13.5 0.75 0.15 1 1 0.04 0.03
414 S41400 11.5–13.5 1.25–2.50 0.15 1 1 0.04 0.03
416 S41600 12–14 0.15 1.25 1 0.06 0.15 min 0.060 Mo (optional)
416Se S41623 12–14 0.15 1.25 1 0.06 0.06 0.15 Se min
420 S42000 12–14 0.15 min 1 1 0.04 0.03
420F S42020 12–14 0.15 min 1.25 1 0.06 0.15 min 0.60 Mo max (optional)
431 S41623 15–17 1.25–2.50 0.2 1 1 0.04 0.03
440A S44002 16–18 0.60–0.75 1 1 0.04 0.03 0.75 Mo
440B S44003 16–18 0.75–0.95 1 1 0.04 0.03 0.75 Mo
440C S44004 16–18 0.95–1.20 1 1 0.04 0.03 0.75 Mo